## TECNOLOGÍA ELÉCTRICA

| Tipo | B | Curso | 2008/200 | 09. |
|------|---|-------|----------|-----|
|      |   |       |          |     |

Nombre: DNI:

<u>Hojas a entregar:</u> Hoja de lectura óptica y hoja de examen identificada y rellena <u>Nota</u>: Únicamente está permitido el uso de cualquier tipo de calculadora. **TIEMPO: 2 HORAS** 



Esta Prueba Presencial consta de diez ejercicios. Lea atentamente el enunciado de cada uno de ellos antes de resolverlos. Cada ejercicio tiene una validez de 1 punto. Utilice papel de borrador para resolver los ejercicios que lo requieran. De entre las posibles respuestas propuestas en el ejercicio debe seleccionar la que más se aproxime al resultado que usted haya obtenido y marcarla en la hoja de lectura óptica. No se dará como correcto ningún resultado diferente a los reflejados. El desarrollo de cada problema y los resultados intermedios relevantes deben reflejarse en el espacio marcado detrás de los correspondientes ejercicios del presente examen, que debe identificarse y entregarse conjuntamente con la hoja de lectura óptica. Los ejercicios cuyo desarrollo se solicita y que no lo tengan, o no sea correcto, no se darán como válidos para la nota final.

*Ejercicio 1.* Explicar brevemente el significado de los términos de la expresión que indica las tomas de un transformador  $(U_1\pm a\ x\ b\%\ /\ U_2)$  ¿Cuál es la tensión máxima del devanado de alta tensión de un transformador de característica  $15\pm 5x1\%/0.4\ kV$ ?

Solución: a) 15500V b) 15750 V c) 16000 V d) 20000 V

Desarrollo:

*Ejercicio2*. Describa brevemente el principio de funcionamiento de una pila de combustible y como se conecta a la red de distribución de energía. Su <u>principal ventaja</u> frente a otras formas de generación de energía es:

## Solución:

- a) Que generando corriente continua puede alimentar cargas en continua directamente
- b) Que la tensión de suministro puede lograrse fácilmente poniendo pilas en serie.
- c) Que generan energía de forma autónoma, a la vez que sirven de sistema de almacenamiento de energía.
- d) Que tiene mejor rendimiento que cualquier otra fuente de energía.

| Nombre:     | DNI: |
|-------------|------|
|             |      |
| Desarrollo: |      |
| Desarrouo.  |      |
|             |      |
|             |      |
|             |      |
|             |      |
|             |      |
|             |      |

*Ejercicio 3.* Cite los diversos tipos de seccionadores que se utilizan habitualmente en las redes de alta y media tensión, especificando sus aplicaciones. De sus características asignadas se puede decir que:

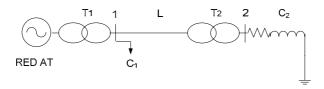
## Solución:

- a) Los seccionadores no tienen intensidad admisible de corta duración asignada.
- **b**) Los seccionadores de tierra tienen poder de corte, que no tienen los seccionadores convencionales.
- c) Los seccionadores sólo cortan la corriente nominal, pero no la de cortocircuito.
- d) Los seccionadores no tienen poder de cierre asignado, salvo si son seccionadores de puesta a tierra.

| D  | esarr | n | 11 | n  |
|----|-------|---|----|----|
| IJ | esarr | u | ш  | u. |

*Ejercicio 4.* Una línea de media tensión de 20 kV y de 30 km de longitud alimenta, a dicha tensión, una carga inductiva de 12 MVA con f.d.p 0,8. El conductor de la línea es de aluminio, de resistencia 0,00893  $\Omega$ /km a 20 °C y la inductancia de la línea así construida es 1,554 mH/km.

Se desean conocer las pérdidas de potencia activa de la línea cuando los conductores trabajan en verano a temperatura de 60 °C. Se estima que la variación de resistencia del conductor con la temperatura tiene un coeficiente  $\alpha = 0,0039$  °C<sup>-1</sup>


Solución: a) 90 kW b) 111 kW c) 0,33 MW d) 5 MW

Desarrollo:

*Ejercicio 5*. En el sistema eléctrico de la figura, las características nominales de los elementos que la componen son las siguientes:

- Red de AT: 220 kV,  $S_{RAT} = 100 \text{ MVA}$ .
- Transformador  $T_1$ : 220/20 kV; 10 MVA,  $u_{CC} = 6\%$  ( $R_{TI} = 0$ )
- *Linea L*:  $Z_L = 3 + j0,7 \Omega$ .
- Carga  $C_1$ : industria conectada en AT, de pot. cte, inductiva, con fdp 0,8 y  $P_{C1} = 1 \text{ MVA}$ , a 20 kV,
- Transformador  $T_2$ : 20/0,4 kV; 5 MVA,  $u_{CC} = 6\%$  ( $R_{T2}=0$ )
- Carga  $C_2$ : Cargas domésticas de impedancia constante,  $Z_{C2}$ = 0,02+j0,01  $\Omega$ .

Tomando como bases  $S_b$ = 10 MVA y la tensión  $U_{b1}$  = 20 kV en el tramo 1, determinar la tensión a la que se alimentará la carga  $C_2$ , si la tensión a la salida de  $T_1$  se mantiene en 21 kV mediante la regulación de tomas del transformador.



Solución: a) 370 V

b) 385 V

c) 400 V

d) 420 V

Desarrollo:

*Ejercicio 6.* Una línea de alta tensión de 20 kV que parte de un transformador de potencia de 220/20 kV, 10 MVA y u<sub>cc</sub>= 6% (con ángulo de impedancia de 72°), conectado a una red de 220 kV de Scc=500 MVA (de resistencia Rr despreciable). La red de 20 kV está protegida a la salida del transformador por un interruptor automático de tensión asignada de 24 kV. Determinar el poder de cierre mínimo que debe tener el interruptor automático para proteger adecuadamente la línea.

(Nota: considere factor de red c = 1)

 Nombre:
 DNI:

 Solución: a) 3700 A
 b) 5500 A
 c) 7800 A
 d) 9000 A

Desarrollo:

*Ejercicio* 7. Un centro de transformación está conectado a una red de media tensión, de impedancia despreciable a los efectos del cálculo, con un transformador de 15/0,4 kV, 100 kVA y  $u_{cc}$ = 4%( $R_T$  = 0). El neutro de la red de media tensión está puesto a tierra en la subestación con resistencia de 20 Ω. El centro de transformación se sitúa en un terreno de resistividad  $\rho$  = 100 Ω.m y su puesta a tierra se hace mediante conductor de cobre de 50 mm², enterrado a 0,5 m, en forma de rectángulo de 4mx3m y 8 picas, de 14 mm de diámetro, de 2m de longitud. Utilizando la tabla adjunta de factores de cálculo de tensiones de contacto y considerando que  $U_{cmax}$ = $I_{dAT}$ . $k_c$ . $\rho$ , determinar el tiempo máximo en el que deben actuar las protecciones para cumplir la condición de tensión de contacto máximas admisibles.

Solución: a)  $0.05 \, s$  b)  $0.3 \, s$  c)  $0.9 \, s$  d)  $2 \, s$ 

Desarrollo:

*Ejercicio* 8. En el centro de transformación del ejercicio anterior, el cuadro de protecciones de baja tensión situado a la salida del transformador está referido a la misma tierra del centro. Determinar el nivel de aislamiento necesario en dicho cuadro si consideramos que el neutro del transformador del centro es independiente de la tierra de éste.

Solución: a) 1,2 kV b) 3 kV c) 4 kV d) 15 kV

| Nombre:                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DNI:                     |                    |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|
| Nombie.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Divi.                    |                    |
| Desarrollo:                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
| Ejercicio 9. En el cuadranterior se coloca un pr<br>protección asignada de<br>debe soportar el disposi | otector de sobretension 3 kV. Determinar la constant l | ones transitorias de tip | o 1 con tensión de |
| Solución: a) 300 A                                                                                     | <b>b)</b> 800 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c) 1800 A                | d) 3000 A          |
| Desarrollo:                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
| N , C                                                                                                  | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 DT 1 . 11              | 1 . 1              |
| Nota: Suponga que la r<br>situación más desfavor                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ae B1 es aespreciable    | para cubrir ia     |
| Ejercicio 10. Determinedel cuadro anterior, con ejercicios anteriores y la                             | siderando los valores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | de sobretensión estab    | =                  |
| Solución: a) 2 mm                                                                                      | <i>b</i> ) 2,4 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c) 3 mm                  | <i>d</i> ) 5,5 mm  |
|                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
| Desarrollo:                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |
| Desarrollo:                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |

## La solución exacta es 3,8 mm

| Tensión nominal del sistema de suministro basada en la Norma CEI 60038 |         | Tensión fase-neutro derivada de                                    | Tensión de impulso asignada |       | ada   |        |
|------------------------------------------------------------------------|---------|--------------------------------------------------------------------|-----------------------------|-------|-------|--------|
|                                                                        |         | los valores nominales en c.a. o en c.c. hasta este valor inclusive | Categoría de sobretensión   |       |       |        |
|                                                                        |         | v                                                                  | I                           | II    | Ш     | IV     |
|                                                                        |         | 50                                                                 | 330                         | 500   | 800   | 1 500  |
|                                                                        |         | 100                                                                | 500                         | 800   | 1 500 | 2 500  |
|                                                                        | 120-240 | 150                                                                | 800                         | 1 500 | 2 500 | 4 000  |
| 230/400 277/480                                                        |         | 300                                                                | 1 500                       | 2,500 | 4 000 | 6 000  |
| 400/690                                                                |         | 600                                                                | 2 500                       | 4 000 | 6 000 | 8 000  |
| 1 000                                                                  |         | 1 000                                                              | 4 000                       | 6 000 | 8 000 | 12 000 |

Nombre: DNI:

| Configuración                                                                                             | $\begin{array}{c} \textbf{Longitud de} \\ \textbf{las picas} \\ \textbf{L}_{p}(m) \end{array}$ | Factor de<br>resistencia k <sub>r</sub> | Factor de<br>tensión de<br>paso k <sub>p</sub> | Factor de tensión de contacto $k_c=k_{pacceso}$ |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------|
| Conductor de cobre de 50 mm <sup>2</sup> enterrado a 0,5 m, en forma de rectángulo de 4m x 3m y sin picas |                                                                                                | 0,137                                   | 0,0287                                         | 0,0868                                          |
| Conductor de cobre de 50 mm <sup>2</sup> enterrado a 0,5                                                  | 2                                                                                              | 0,100                                   | 0,0231                                         | 0,0506                                          |
| m, en forma de rectángulo de 4m x 3m y con 4                                                              | 4                                                                                              | 0,080                                   | 0,0178                                         | 0,0355                                          |
| picas de 14 mm de diámetro uniformemente                                                                  | 6                                                                                              | 0,067                                   | 0,0143                                         | 0,0270                                          |
| repartidas en el perímetro                                                                                | 8                                                                                              | 0,058                                   | 0,0119                                         | 0,0217                                          |
| Conductor de cobre de 50 mm <sup>2</sup> enterrado a 0,5                                                  | 2                                                                                              | 0,088                                   | 0,0200                                         | 0,0402                                          |
| m, en forma de rectángulo de 4m x 3m y con 8                                                              | 4                                                                                              | 0,067                                   | 0,0143                                         | 0,0252                                          |
| picas de 14 mm de diámetro uniformemente                                                                  | 6                                                                                              | 0,055                                   | 0,0110                                         | 0,0179                                          |
| repartidas en el perímetro                                                                                | 8                                                                                              | 0,047                                   | 0,0089                                         | 0,0137                                          |



Figura 6.6. Parámetro  $\kappa$  para el cálculo de la corriente de cresta según la norma UNE-EN 60909-0.

|                                          |          |              |          | (valor de<br>cresta) |      |
|------------------------------------------|----------|--------------|----------|----------------------|------|
| Tensión                                  |          |              |          | kV                   |      |
| soportada                                |          |              |          | 0,33                 | 0,01 |
| de impulso<br>requerida <sup>1) 5)</sup> | Combo    | de contamina |          | 0,4                  | 0,02 |
| requerida                                | Grado (  | 2            | 3        | 0,5                  | 0,04 |
| kV                                       | mm       | mm           | mm       | 0,6                  | 0,06 |
| 0,33                                     | 0,01     |              |          | 0,8                  | 0,13 |
| 0,40                                     | 0,02     | 1            |          | 1,0                  | 0,26 |
| 0,50                                     | 0,04     | 0.2          |          |                      |      |
| 0,60                                     | 0,06     | 0,2          | 0.0      | 1,2                  | 0,42 |
| 0,80                                     | 0,10     |              | 0,8      | 1,5                  | 0,76 |
| 1,0                                      | 0,15     |              |          | 2,0                  | 1,27 |
| 1,2                                      | 0,25     | 0,25         |          | 2,5                  | .1,8 |
| 1,5                                      | 0,5      | 0,5          |          | 3,0                  | 2,4  |
| 2,0                                      | 1,0      | 1,0          | 1,0      | 4,0                  | 3,8  |
| 2,5                                      | 1,5      | 1,5          | 1,5      | 5,0                  | 5,7  |
| 3,0                                      | 2,0      | 2,0          | 2,0      | 6,0                  | 7,9  |
| 4,0                                      | 3,0      | 3,0          | 3,0      | 8,0                  |      |
| 5,0                                      | 4,0      | 4,0          | 4,0      |                      | 11,0 |
| 6,0                                      | 5,5      | 5,5          | 5,5      | 10                   | 15,2 |
| 8,0                                      | 8,0      | 8,0          | 8,0      | 12                   | 19   |
| 10                                       | 11       | 11           | 11       | 15                   | 25   |
| 12                                       | 14       | 14           | 14       | 20                   | 34   |
| 15                                       | 18       | 18           | 18       | 25                   | 44   |
| 20                                       | 25       | 25           | 25       | 30                   | 55   |
| 30                                       | 33<br>40 | 33<br>40     | 33       | 40                   | 77   |
|                                          |          |              | 40       |                      |      |
| 50                                       | 60<br>75 | 60           | 60       | 50                   | 100  |
| 60                                       | 90       | 75<br>90     | 75<br>90 | 60                   |      |
| 80                                       | 130      | 130          | 130      | 80                   |      |
| 100                                      | 170      | 170          | 170      | 100                  |      |
|                                          |          |              |          |                      |      |

Distancias en el aire para soportar Distancias en el aire para soportar sobretensiones

Nombre: DNI:

sobretensiones transitorias rápidas (rayo) permanentes o temporales de corta duración (50 Hz)